

TS-GP2512-OLT-B+ (V1.1)

GPON OLT (Class B+) Optical Transceiver SFP Module TS-GP2512-OLT-B+

TS-GP2512-OLT-B+

Features

- Market Single fiber bi-directional optical subassembly
- ★ 1310nm Burst-mode APD/TIA receiver and 1490nm Continuous DFB laser Transmitter (with WDM)
- SFP metallic package
- → 40 to 85 °C operating ambient temperature
- Single SC receptacle optical interface compliant
- Y Hot-pluggable
- → +3.3V single power supply
- Y Low power consumption
- Y Fast settling time with immunity to long streams of CID
- **&** Guard time squelched function
- Y Digitalized burst mode optical power monitoring
- Y LVPECL compatible data input and output interface
- X LVTTL receiver burst-power-detect indication
- Class 1 Laser eye safety standard
- **Excellent EMI and EMC characteristics**
- **ESD** protection function
- Y RoHs compliant

Applications

Optical transceiver for Gigabit-capable Passive Optical Networks (GPON) Class B+ OLT side

Standard

ITU-T G.984.2 Class B+

Small Form-factor Pluggable (SFP) Transceiver MultiSource Agreement July 5, 2000

Description

The GPON OLT Transceiver is designed for Gigabit-capable Passive Optical Network (GPON) transmission. The module incorporates 1490nm DFB continuous-mode transmitter and 1310nm burst-mode APD receiver.

The transmitter section uses a high efficience 1490nm DFB laser and an integrated laser driver which is designed to be class-1 eye safty under any single fault. The laser driver includes APC and temperature compensation functions, which are used for keeping the launch optical power and extinction ratio constant

over temperature and aging.

The receiver section uses an integrated APD detector and burst mode preamplifier mounted together. To provide fast settling time with immunity to long streams of Consecutive Identical Digits(CID), the receiver requires a reset signal provided by the media access controller(MAC). The receiver has fast SD function, the rising time is about 5ns, when reset signal arrived, the SD signal will be turned to low, and the noise in the guard time will be squelched.

The receiver includes digitalized burst mode optical power monitoring function, which converses any of a received ONU optical power directly in digital, with a Trigger input from system. When rising edge of Trigger detected, the DDM processor starts a burst optical power conversion, the digital result is available via DDM interface after Burst Optical Power Conversion Time. Trigger pulse width should be more than Burst Optical Power Conversion Holding Time.

An integrated WDM coupler can distinguish 1310nm input light from 1490nm output light.

The metallic package guarantees excellent EMI and EMC characteristics, which totally comply with international relevant standards.

Absolute Maximum Ratings

Parameter	Symbol	Unit	Min	Max
Operating Temperature Range	T_{c}	οС	-40	85
Storage Temperature Range	T_s	оС	-40	85
Relative Humidity	RH	%	5	95
Power Supply Voltage	V_{cc}	V	0	4.6
Pin Input Voltage		V	GND	Vcc
Reciever Damage Threshold		dBm	+5	- 1

Recommended operating conditions

Parameter	Symbol	Unit	Min	Тур	Max
Operating Voltage	V_{cc}	V	3.135	3.3	3.465
Operating Temperature Range	T_{op}	°C	-40	-	85
Operating Data Rate(TX side)		Mbps	-	2488.32	-
Operating Data Rate(RX side)		Mbps	-	1244.16	-

Specifications(-40 $^{\circ}\text{C}\!<\!T_{op}\!<\!85^{\circ}\text{C}$ and 3.135V<V $_{cc}\!<\!3.465\text{V})$

Parameter	Symbol	Unit	Min	Тур	Max	Test condition			
Electrical Characteristics									
Operating Voltage	V_{op}	V	3.135	3.3	3.465				
Supply Current	Icc	mA	200	- 3	400				
LVPECL differential Data Input Swing		mV	200	-	1600	Note1			
LVPECL differential Data Outpu Swing		mV	400	-	1600	Note10			
Differential Data input impedance		Ω	-	100	-	Note1			
Signal Level(LVTTL H)		V	2.4	- (Vcc				
Signal Level(LVTTL L)		V	0	-	0.8				
Optical Transmiter Characteristics									
Data Rate		Mbps	-	2488.32	- 0				
Center Wavelength Range	λ_{c}	nm	1480	1490	1500	DFB-LD			
Spectral Width(@-20Db)	Δλ	nm	-	- 1	1				
Side Mode Suppression Ratio	SMSR	dB	30	- 1	-				
Launch Optical Power(BOL)	PBOL	dBm	+2.5	- 3	+5	Note2			
Launch Optical Power(EOL)	PEOL	dBm	+1.5	- (+5				
Off level light		dBm		-	-39	Note3			
Extinction Ratio	EX	dB	9.0	- (-)	Note4			
Total Jitter	J _{total}	UI	. -	- 8	0.1				
Rise/Fall time(20 ~ 80%)	Tr/Tf	Ps	-	- 1	250	Note5			
RIN ₁₅ OMA		dB /Hz	<u> </u>	- 3	-115				
Optical Return Loss Tolerance		dB	-	-	15				
Maximum reflectance		dB	-	- 1	-12	λ=1.49μm			
Eye Diagram	Note4 Note6								

Note1:AC coupled internal(see the recommended circuit below).

Note2:Coupled into 9/125 SMF

Note3:Measured without data input

Note4:Measured with PRBS 2²³-1 test pattern @2.488Gbps

Note5:Measured with the Bessel-Thompson filter OFF

Note6: Mask of diagram as below,